Insights into the conditions of application of noise-based spectral ratios in a highly industrialized area: a case study in the French Rhone Valley

Author:

Gisselbrecht Loïc12ORCID,Froment Bérénice1,Boué Pierre2,Gélis Céline1

Affiliation:

1. Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-ENV, SCAN, BERSSIN, 31 Avenue de la Division Leclerc , Fontenay-aux-Roses 92260 , France

2. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, 1381 Rue de la Piscine, Gières 38610 , France

Abstract

SUMMARY The local ground motion amplification related to the geology at a specific site (i.e. the so-called site effects) may be classically quantified through the SSR (standard spectral ratio) technique applied on earthquake recordings. However, such a quantification might be challenging to carry out in low-to-moderate seismicity regions. Methods based on background ambient noise, such as noise-based standard spectral ratio (SSRn), might be of great interest in these areas. But noise-derived amplification is particularly sensitive to local anthropogenic sources, which may introduce biases in the evaluation of site effects by dominating the geological effects, especially for frequencies higher than 1 Hz. A hybrid approach (SSRh), developed to reduce biases in noise-based spectral ratios by combining classical earthquake-based spectral ratio (SSR) and SSRn, was recently introduced and relies on a site reference. We here investigate the applicability of SSRn and SSRh in a heavily industrialized environment in the Tricastin Valley (south-east France), where critical facilities are located. We continuously recorded ambient noise from 2020 February to March on a 400-sensor seismic array covering an area of about 10 km by 10 km. We demonstrate that SSRn and SSRh computed below 1 Hz are able to reproduce amplification factors provided by SSR. By contrast, at frequencies higher than 1 Hz, SSRn strongly deviates from SSR. SSRh shows closer results to SSR but presents a dependence to the choice of the local site reference, thereby questioning the possibility to use SSRh blindly to estimate the local amplification in our context. These discrepancies reflect the impact of local anthropogenic sources. We therefore introduced a two-step workflow to mitigate the influence of local sources. The first step is to define a characteristic time window to optimally isolate significant transient signals. The second step consists in selecting the time segments that do not contain these transients with a clustering-based approach. By applying this workflow, we were able to remove some strong anthropogenic transient signals likely to be generated by local sources at some sites and therefore to locally improve the amplification assessment through noise-based spectral ratios. However, stationary sources, whose impact cannot be removed through our procedure, remain a major issue. This study provides some insights into the application of SSRn and SSRh in noisy industrialized areas, especially regarding the impact of local noise sources. It illustrates the difficulty of having a procedure for mitigating the impact of these sources that is efficient everywhere inside such a complex anthropized environment, where different types of sources (including stationary sources) cohabit.

Funder

French National Research Agency

GFZ

University of Potsdam

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference49 articles.

1. Microtremor measurements: a tool for site effect estimation?;Bard,1999

2. The two-dimensional resonance of sediment-filled valleys;Bard;Bull. seism. Soc. Am.,1985

3. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements;Bensen;Geophys. J. Int.,2007

4. The nature of noise wavefield and its applications for site effects studies;Bonnefoy-Claudet;Earth Sci. Rev.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3