The prediction of shale gas reservoir parameters through a multilayer transfer learning network

Author:

Wang Min1ORCID,Guo XinPing1,Tang HongMing2,Yu WeiMing2,Zhao Peng1,Shi XueWen3

Affiliation:

1. School of Electrical Engineering and Information, Southwest Petroleum University , Chengdu 610500, China

2. School of Geoscience and Technology, Southwest Petroleum University , Chengdu 610500, China

3. Exploration and Development Research Institute, PetroChina Southwest Oil and Gas Field Company , Chengdu 610051, China

Abstract

SUMMARY Due to the strong heterogeneity of the reservoir, it is difficult to extend the classical reservoir parameter prediction model to the new work area. Traditional geological methods rely on experience, while machine learning algorithms lack consideration of reservoir heterogeneity. This makes it impossible for these methods to achieve good predictive performance in new work areas. In this paper, we discuss designing a multilayer deep transfer learning network (MDTL). The network enables accurate prediction of reservoir parameters in new areas based on core and logging data from mature areas. For the architectural design, we establish a network structure that realizes data interaction in different work areas. For network parameter optimization, we design a multilayer maximum mean discrepancy loss function. It guides network training to learn feature knowledge about data in different work areas. For logging data processing, we explore a support vector machine method to remove abnormal noise in logging data. We apply MDTL to predict shale gas porosity and total organic carbon content in southern Sichuan. Compared to state-of-the-art reservoir parameter prediction models, MDTL achieves the best performance in new well areas. The network integrates the idea of multilayer transfer learning, reduces the influence of reservoir heterogeneity and effectively ensures the prediction accuracy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Chengdu University of Technology

CNPC

SWPU

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3