Glacial isostatic adjustment in the northern adriatic region: estimates of the contribution from the Alpine ice sheet

Author:

Linsalata Fernando1ORCID,Melini Daniele2ORCID,Spada Giorgio1ORCID

Affiliation:

1. Dipartimento di Fisica e Astronomia (DIFA), Alma Mater Studiorum Università di Bologna , Viale Carlo Berti Pichat 8, 40127, Bologna, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia , Sezione di Sismologia e Tettonofisica,Via di Vigna Murata 605, I-00143 Roma, Italy

Abstract

SUMMARY The present-day sea-level variations and vertical movements in the northern Adriatic Sea and in the highly vulnerable Venetian Lagoon result from a number of simultaneously operating contributions. These include Glacial Isostatic Adjustment (GIA), the global, long-term process arising from interactions between the cryosphere, the solid Earth and the oceans in response to the melting of continental ice sheets. Although the GIA contribution in northern Adriatic Sea has been the subject of various investigations so far, significant uncertainties still exist, especially related to the extent and chronology of the Würm Alpine ice sheet and to the rheological profile of the mantle. Here, taking advantage of the recent publication of updated deglaciation chronologies for the far field late-Pleistocene ice sheets and for the near-field alpine ice complex, we produce up-to-date estimates of the present-day rates of GIA-induced relative sea-level variations and vertical displacements in the Venetian Lagoon and in the northern Adriatic Sea, which are compared with GNSS and tide-gauge observations. From high-resolution numerical simulations, we find that GIA is responsible for a complex pattern of geodetic signals across the Po plain and the northern Adriatic Sea. The modeled GIA rates are of the order of fractions of mm yr−1, generally small – but not negligible – compared to the signals observed at local tide gauges and at GNSS sites in the Po plain and facing the Venetian Lagoon. Our results indicate that, while GIA represents a relatively small component among those responsible for present-day land movements and relative sea-level variations in the northern Adriatic Sea, its contribution needs to be taken into account for a correct interpretation of the observed geodetic variations.

Funder

INGV

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3