Enhanced glacial earthquake catalogues with supervised machine learning for more comprehensive analysis

Author:

Pirot Emilie1ORCID,Hibert Clément2ORCID,Mangeney Anne1

Affiliation:

1. Institut de Physique du Globe de Paris, CNRS, Université de Paris-Cité , Paris 75005 , France

2. Institut Terre Environnement de Strasbourg , CNRS UMR 7063, University of Strasbourg/EOST, Strasbourg 67000 , France

Abstract

SUMMARY Polar regions and Greenland in particular are highly sensitive to global warming. Impacts on Greenland’s glaciers may be observed through the increasing number of calving events. However, a direct assessment of the calving activity is limited due to the remoteness of polar regions and the cloudy weather which makes impossible a recurrent observation through satellite imagery. To tackle this issue, we exploit the seismological network deployed in Greenland which actively records seismic signals associated with calving events, hereinafter referred to as glacial earthquakes. These seismic signals present a broad frequency range and a wide diversity of waveform which make them difficult to discriminate from tectonic events as well as anthropogenic and natural noises. In this study, we start from two catalogues of known events, one for glacial earthquake events which occurred between 1993 and 2013 and one for earthquakes which occurred in the same time period, and we implement a detection algorithm based on the STA/LTA method to extract signals’ events from continuous data. Then, we train and test a machine learning processing chain based on the Random Forest algorithm which allows us to automatically associate the events respectively with calving and tectonic activity, with a certain probability. Finally, we investigate 844 selected days spanning time of continuous data from the Greenland regional seismic network which results in a new, more exhaustive, catalogue of glacial earthquakes expanded of 1633 newly detected glacial events. Moreover, we extensively discuss the choice of the features used to describe glacial earthquakes, in particular the 39 new features created in this study which have drastically improved our results with 7 of the 10 best features being in the added set. The perspective of further expansion of the glacial earthquake catalogue applying the processing chain discussed in this paper on different time spans highlights how combining seismology and machine learning can increase our understanding of the spatio-temporal evolution of calving activity in remote regions.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3