Tracing titanomagnetite alteration with magnetic measurements at cryogenic temperatures

Author:

Kosterov Andrei1ORCID,Surovitskii Leonid12,Maksimochkin Valerii3,Yanson Svetlana1,Smirnov Aleksey24

Affiliation:

1. St Petersburg University , 7-9 Universitetskaya Embankment 199034, St Petersburg , Russia

2. Department of Geological and Mining Engineering and Sciences, Michigan Technological University , 1400 Townsend Drive, Houghton, MI 49931 , USA

3. Faculty of Physics, Moscow State University , 1, bld. 2 Leninskie Gory 119991, Moscow , Russia

4. Department of Physics, Michigan Technological University , 1400 Townsend Drive, Houghton, MI 49931 , USA

Abstract

SUMMARY Titanomagnetite containing up to 0.6–0.7 Ti atoms per formula unit is a primary magnetic mineral phase in submarine basalts and in some terrestrial volcanic rocks. On a geological timescale, it often undergoes alteration, forming new magnetic phases that may acquire (thermo)chemical remanent magnetization. The initial stage of this natural process can be modelled by prolonged laboratory annealing at moderately elevated temperatures. In this study, our goal is to characterize the alteration products resulting from annealing a submarine basalt containing homogeneous titanomagnetite Fe3−xTixO4 (x ≈ 0.46) at temperatures of 355, 500 and 550 °C for up to 375 hr, by examining their magnetic properties over a wide range of temperatures. The effect of extended annealing is most apparent in the low-temperature magnetic properties. In the fresh sample, a magnetic transition is observed at 58 K. Below the transition temperature, the field-cooled (FC) and zero-field-cooled (ZFC) saturation isothermal remanent magnetization (SIRM) curves are separated by a tell-tale triangular-shaped area, characteristic for titanomagnetites of intermediate composition. The room-temperature SIRM (RT-SIRM) cycle to 1.8 K in zero field has a characteristic concave-up shape and is nearly reversible. For the annealed samples, the magnetic transition temperature shifts to lower temperatures, and the shape of the curves above the transition changes from concave-up to concave-down. The shape of the RT-SIRM cycles also progressively changes with increasing annealing time. The SIRM loss after the cycle increases up to ∼30 per cent for the samples annealed for 375 hr at 355 °C, and for 110 hr at 500 and 550 °C. The Curie temperatures of the newly formed magnetic phases exceed the Curie temperature of the fresh sample (205 °C) by up to 350 °C. While this effect is most commonly attributed to extensive single-phase oxidation (maghemitization), the behaviour observed at cryogenic temperatures appears incompatible with the known properties of highly oxidized titanomaghemites. Therefore, we propose that, at least in the initial stage of the ‘dry’, that is, not involving hydrothermalism, alteration of titanomagnetite, temperature- and time-controlled cation reordering is the primary mechanism driving changes in both low- and high-temperature magnetic properties.

Funder

Russian Foundation for Basic Research

St. Petersburg State University

Rochester Academy of Science

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3