The mechanism of the present-day crustal deformation in southeast Tibet: from numerical modelling and geodetic observations

Author:

Pang Yajin1ORCID,Wu Yanqiang1,Li Yujiang2,Chen Changyun1

Affiliation:

1. The First Monitoring and Application Center, China Earthquake Administration , Tianjin 300180 , China

2. National Institute of Natural Hazards, Ministry of Emergency Management of China , Beijing 100085 , China

Abstract

SUMMARY The mechanism of present-day crustal deformation in southeast Tibet remains controversial. 3-D high-precision geodetic data can provide significant clues to analyse the key driving forces. Here, we conduct a series of 3-D finite-element modelling to investigate the influences of gravitational collapse, tectonic extrusion and mid-to-lower crustal flow on crustal deformation in southeast Tibet. The numerical results show that the gravitational collapse leads to predominant N-S extension and surface subsidence in the northern region, and predominant NW-SE compression and uplift in the southern region, which can explain the normal-faulting earthquakes in the interior. The gravity-driven horizontal velocity depends on the upper crustal viscosity, while the vertical velocity is determined by mid-to-lower crustal viscosity. The eastward tectonic extrusion causes slight southeastward rotation and predominant E-W compression in the northern region but has a little effect on the deformation in the southern region. By considering the joint effects of gravitational collapse and tectonic extrusion, we simulate the crustal deformation that reconciles with present-day geodetic observations. Both the two driving forces lead to positive shear strain rates along the major fault zones, with more contributions from the tectonic extrusion of the Tibetan Plateau. Constrained by the 3-D geodetic observations, the numerical results argue against the presence of massive fast mid-to-lower crustal flow from the Tibetan Plateau. Overall, the present-day crustal deformation in southeast Tibet is jointly driven by gravitational collapse and tectonic extrusion, which play distinct roles in shaping the faulting kinematics and regional strain partitioning.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3