Machine learning prediction of groundwater heights from passive seismic wavefield

Author:

Abi Nader A1ORCID,Albaric J1,Steinmann M1,Hibert C2ORCID,Malet J-P23ORCID,Sue C14,Fores B1,Marchand A1,Gros M1,Celle H1,Pohl B5,Stefani V1,Boetsch A1

Affiliation:

1. Chrono-environnement UMR6249, CNRS / Université de Franche-Comté , Besançon , France

2. Institut Terre et Environnement de Strasbourg UMR7063, CNRS / Université de Strasbourg , Strasbourg , France

3. Ecole et Observatoire des Sciences de la Terre UAR830, CNRS / Université de Strasbourg , Strasbourg , France

4. Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel , Grenoble , France

5. Biogéosciences UMR6282, CNRS / Université de Bourgogne , Dijon , France

Abstract

SUMMARY Most of water reservoirs are underground and therefore challenging to monitor. This is particularly the case of karst aquifers which knowledge is mostly based on sparse spatial and temporal observations. In this study, we propose a new approach, based on a supervised machine learning algorithm, the Random Forests, and continuous seismic noise records, that allows the prediction of the underground river water height. The study site is a karst aquifer in the Jura Mountains (France). An underground river is accessible through an artificial shaft and is instrumented by a hydrological probe. The seismic noise generated by the river is recorded by two broadband seismometers, located underground (20 m depth) and at the surface. The algorithm succeeds in predicting water height thanks to signal energy features. Even weak river-induced noise such as recorded at the surface can be detected and used by the algorithm. Its efficiency, expressed by the Nash–Sutcliffe criterion, is above 95 per cent and 53 per cent for data from the underground and surface seismic stations, respectively.

Funder

French Karst National Observatory Service

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3