Reproducing complex anisotropy patterns at subduction zones from splitting intensity analysis and anisotropy tomography

Author:

Confal Judith M1ORCID,Baccheschi Paola2,Pondrelli Silvia1,Karakostas Foivos1ORCID,VanderBeek Brandon P3ORCID,Huang Zhouchuan4,Faccenda Manuele3

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna , 40127 Bologna , Italy

2. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma, 00143 , Roma , Italy

3. Dipartimento di Geoscienze, Università di Padova, 35131 , Padua , Italy

4. Department of Earth and Planetary Science, 210023, School of Earth Sciences and Engineering, Nanjing University , Nanjing , China

Abstract

SUMMARYMeasurements of seismic anisotropy provide a lot of information on the deformation and structure as well as flows of the Earth's interior, in particular of the upper mantle. Even though the strong and heterogeneous seismic anisotropic nature of the upper mantle has been demonstrated by a wealth of theoretical and observational approaches , most of standard teleseismic body-wave tomography studies overlook P- and S-wave anisotropy, thus producing artefacts in tomographic models in terms of amplitude and localization of heterogeneities. Conventional methods of seismic anisotropy measurement have their limitations regarding lateral and mainly depth resolution. To overcome this problem much effort has been done to develop tomographic methods to invert shear wave splitting data for anisotropic structures, based on finite-frequency sensitivity kernels that relate model perturbations to splitting observations. A promising approach to image the upper mantle anisotropy is the inversion of splitting intensity (SI). This seismic observable is a measure of the amount of energy on the transverse component waveform and, to a first order, it is linearly related to the elastic perturbations of the medium through the 3-D sensitivity kernels, that can be therefore inverted, allowing a high-resolution image of the upper mantle anisotropy. Here we present an application of the SI tomography to a synthetic subduction setting. Starting from synthetic SKS waveforms, we first derived high-quality SKS SI measurements; then we used the SI data as input into tomographic inversion. This approach enables high-resolution tomographic images of upper-mantle anisotropy through recovering vertical and lateral changes in anisotropy and represents a propaedeutic step to the real cases of subduction settings. Additionally this study was able to detect regions of strong dipping anisotropy by allowing a 360° periodic dependence of the splitting vector.

Funder

ERC

INGV

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3