3-D muographic inversion in the exploration of cavities and low-density fractured zones

Author:

Balázs László12,Nyitrai Gábor13ORCID,Surányi Gergely1,Hamar Gergő1,Barnaföldi Gergely Gábor1,Varga Dezső1

Affiliation:

1. Wigner Research Center for Physics , Konkoly-Th. M. u. 29-33, 1121 Budapest , Hungary

2. Department of Geophysics and Space Science, Eötvös Loránd University , Pázmány P. s. 1/C, 1117 Budapest , Hungary

3. Budapest University of Technology and Economics, Institute of Nuclear Techniques , Műegyetem rkp. 9, 1111 Budapest , Hungary

Abstract

SUMMARY Muography is an imaging tool based on the attenuation of cosmic muons for observing density anomalies associated with large objects, such as underground caves or fractured zones. Tomography based on muography measurements, that is, 3-D reconstruction of density distribution from 2-D muon flux maps, brings along special challenges. The detector field of view covering must be as balanced as possible, considering the muon flux drop at high zenith angles and the detector placement possibilities. The inversion from directional muon fluxes to a 3-D density map is usually underdetermined (more voxels than measurements). Therefore, the solution of the inversion can be unstable due to partial coverage. The instability can be solved by geologically relevant Bayesian constraints. However, the Bayesian principle results in parameter bias and artefacts. In this work, linearized (density-length based) inversion is applied by formulating the constraints associated with inversion to ensure the stability of parameter fitting. After testing the procedure on synthetic examples, an actual high-quality muography measurement data set from seven positions is used as input for the inversion. The resulting tomographic imaging provides details on the complicated internal structures of karstic fracture zone. The existence of low density zones in the imaged space was verified by samples from core drills, which consist of altered dolomite powder within the intact high density dolomite.

Funder

University of Tokyo

ERI

MSCA

RISE

HEU

NKFIH

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3