Regional-scale resistivity structure of the middle and lower crust and uppermost mantle beneath the southeastern Canadian Cordillera and insights into its causes

Author:

Hanneson Cedar1ORCID,Unsworth Martyn J12

Affiliation:

1. Department of Physics, University of Alberta , Edmonton, Alberta T6G 2E1 , Canada

2. Department of Earth and Atmospheric Sciences, University of Alberta , Edmonton, Alberta T6G 2E3 , Canada

Abstract

SUMMARYSubduction zones are recognized as an important class of plate boundaries and are the location of a number of important geological processes. They are also important because of the mineral and geothermal energy resources formed by plate convergence. While subduction zones around the world have a number of common features, there are also significant differences among them. The Cascadia subduction zone in southern British Columbia is characterized by a relatively hot subducting plate, and a broad backarc region that is believed to exhibit a shallow, convecting asthenosphere. The magnetotelluric (MT) method is a useful tool to study subduction zones and backarc regions because measurements of subsurface resistivity are sensitive to the presence of fluids. A number of previous MT studies have taken place in this region, but they were limited to a 2-D approach to data analysis. As the MT method has developed, it has become clear that there is a significant advantage to using a 3-D approach to data analysis. This paper presents the first regional-scale 3-D resistivity model of the southern Canadian Cordillera and provides new insights into the lithospheric structure and the distribution of fluids. The southeastern Canadian Cordillera has high heat flow and numerous thermal springs, the locations of which are often controlled by faults. However, the deeper thermal structure and origin of the fluids are poorly understood. To develop an improved understanding of the structure of this area, MT data measured at 331 locations were used to create a 3-D model of subsurface electrical resistivity. This study is primarily focused on the Omineca and Foreland morphogeological belts in southeastern British Columbia, which are separated by the southern Rocky Mountain Trench. The resistivity model is presented to a depth of 100 km and a number of conductive features are observed in the crust and uppermost mantle of the southeastern Cordillera. The locations of these conductors broadly matched previously reported conductors, but the 3-D inversion revealed new details of their geometry. The previously reported Canadian Cordilleran Regional conductor was modelled as a number of discrete conductors in the depth range 15–55 km beneath the Omineca belt. Temperatures approximately in the range 400–700 °C are expected at depths of 15–26 km and saline aqueous fluids are likely the cause of the low resistivity. Temperatures approximately in the range 700–1300 °C are expected at depths of 26–55 km and small volumes of partial melt may explain the low resistivity. The Southern Alberta–British Columbia conductor, Red Deer conductor and Loverna conductor were imaged as a single connected conductor, whose low resistivity is likely caused by sulphide mineralization. A group of conductors was imaged near the southern Rocky Mountain Trench in the depth range 10–70 km and their low resistivity is likely caused by interconnected saline fluids and possibly interconnected graphite films. To understand if the distribution of thermal springs was correlated with the 3-D resistivity model, a statistical study was undertaken. This showed no clear correlation between crustal conductance and the distribution of thermal springs.

Funder

NSERC

University of Alberta

Digital Research Alliance of Canada

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3