The performance of differential point positioning using low-cost GNSS in comparison to DInSAR for monitoring coseismic displacement of the Provenzana–Pernicana fault system (Mt. Etna, 2018 December eruptive phase)

Author:

Wilkinson M W1ORCID,Bonforte A2ORCID,Jones R R3,Wadsworth F B4,Roberts G P5,Guglielmino F2

Affiliation:

1. School of Engineering, Newcastle University , Newcastle Upon Tyne, UK

2. Istituto Nazionale di Geofisica e Vulcanologia , Sezione di Catania – Osservatorio Etneo. Piazza Roma, 295125 Catania , Italy

3. Geospatial Research Ltd, Department of Earth Sciences, Durham University , UK

4. Department of Earth Sciences, Durham University , UK

5. Department of Earth and Planetary Sciences , Birkbeck College, Malet Street, London, WC1E 7HX , UK

Abstract

SUMMARY Mt. Etna is a perfect laboratory for testing new approaches and new technologies in a very active geodynamic environment. It offers, in fact, the opportunity for measuring active crustal deformation, related to volcanic activity as well as to seismic faulting on its flanks. In this work, a network of low-cost/low-power Global Navigation Satellite System stations has been installed and tested on Mt. Etna, across a very active fault, the Provenzana–Pernicana system, cutting its north-eastern flank. During the test period, a lateral eruption occurred (starting on 2018 December 24), with a forceful dyke intrusion that stressed all the flanks of the volcano, soliciting all the main faults dissecting the edifice. Also the Provenzana–Pernicana fault system, where this network was recording, was activated during the dyke intrusion, producing a significant seismic swarm. The low-cost/low-power network data analysis allowed the fault slip during the intrusion to be clearly traced in time and space at all the stations lying on the hangingwall mobile block of the fault. All the stations lying south of the fault trace showed an eastward displacement, in very good agreement with the usual kinematics of the fault and the temporal duration of the M 3.5 December 24 earthquake, related to the seaward dislocation of the eastern mobile flank of the volcano, promoted and accelerated by dyke emplacement on the upper part of the edifice.

Funder

INGV

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3