Heat extraction calculations for deep coaxial borehole heat exchangers: matrix analytical approach

Author:

Matyska Ctirad1,Zábranová Eliška2

Affiliation:

1. Department of Geophysics, Faculty of Mathematics and Physics, Charles University ,180 00 Prague 8, Czech Republic

2. Institute of Rock Structure and Mechanics, Czech Academy of Sciences , 180 00 Prague 8, Czech Republic

Abstract

SUMMARY Deep boreholes represent a source of clean energy. Therefore, effective calculations of potential extraction of heat from boreholes for realistic models of the Earth’s crust with variable thermal conductivity and diffusivity are needed. We deal with heat extraction in a quasi-steady state from coaxial boreholes where downward and upward flows of pumped fluid (water) are separated by an inner pipe and connected only at the bottom. We first obtain theoretical estimates of heat extraction for a thermally isolated inner pipe and a model of the ground with constant thermal diffusivity and conductivity. Then, we develop a new analytical matrix method for a general layered ground model that enables us to include depth-dependent ground properties as well as heat exchange between the downward and upward flows of fluid in the borehole. Our straightforward and fast approach is thus suitable for various parametric studies or as a tool for benchmarks of numerical software. A key role in heat extraction from coaxial boreholes is played by the inner-pipe thermal resistance. We apply our method to the parametric study showing the dependence of pumped water temperature and total heat extraction from the borehole on realistic borehole geometries under different amounts of water pumping. The calculations are performed for a 3 km deep borehole as the representative of present deep boreholes used for extraction of geothermal energy and for a 10 km deep borehole. Drilling of such a  superdeep borehole has just started in China and our results demonstrate potential limits of geothermal energy extraction from such great depths.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3