Quantum mechanics-based seismic energy absorption analysis for hydrocarbon detection

Author:

Xue Ya-juan1ORCID,Wang Xing-jian2,Cao Jun-xing2,Liu Zhe-ge1,Yang Jia1

Affiliation:

1. School of Communication Engineering, Chengdu University of Information Technology , Chengdu 610225, China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology , Chengdu 610059, China

Abstract

SUMMARYSeismic attenuation has a considerable impact on resolution reduction and the increase in the dominant frequency period of seismic data. The absorption coefficient estimates, which measure inelastic attenuation, provide a deep understanding of the medium property changes in different geological settings. Conventional absorption coefficient estimation technologies always use time–frequency methods for seismic energy absorption analysis. However, despite continuing efforts to improve the absorption coefficient estimation, the limitation of the time–frequency methods still causes insufficient accuracy of the attenuation estimates, imposing major challenges in oil and gas hydrate exploration. In this study, a quantum mechanics-based seismic absorption coefficient estimation method was proposed for hydrocarbon detection. The seismic data were first projected on a specific basis constructed using the resolution of the Schrödinger equation. Seismic energy absorption analysis was then conducted in the potential-wave function domain. Finally, the quantum absorption coefficient estimates are given by the procedure after using a logarithmic operation and the least-squares fitting method. We examined the merits of these methods using model and field data. The gas reservoir was accurately targeted, which demonstrates that the proposed method has great potential for hydrocarbon detection.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3