3D-printed long-acting 5-fluorouracil implant to prevent conjunctival fibrosis in glaucoma

Author:

Ioannou Nicole1,Luo Jinyuan12,Qin Mengqi1,Di Luca Matteo3,Mathew Essyrose3,Tagalakis Aristides D4,Lamprou Dimitrios A3ORCID,Yu-Wai-Man Cynthia1ORCID

Affiliation:

1. Faculty of Life Sciences & Medicine, King’s College London , London , UK

2. Department of Ophthalmology, Renmin Hospital of Wuhan University , Wuhan , China

3. School of Pharmacy, Queen’s University Belfast , Belfast , UK

4. Department of Biology, Edge Hill University , Ormskirk , UK

Abstract

Abstract Objectives To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. Methods 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. Key findings The PCL–CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 μg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL–CS–5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. Conclusions The PCL–CS–5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL–CS–5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.

Funder

Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3