Affiliation:
1. Curtin Medical School , Bentley 6102 , Australia
2. Curtin Health Innovation Research Institute , Bentley 6102 , Australia
Abstract
Abstract
Objectives
Doxorubicin (Dox) belongs to the anthracycline drug classification and is a widely administered chemotherapeutic. However, Dox use in therapy is limited by its cardiotoxicity, representing a significant drawback of Dox treatment applicability. A large amount of current research is on reducing Dox-induced cardiotoxicity by developing targeted delivery systems and investigating cardiotoxicity mechanisms. Recently, discrepancies have challenged the traditional understanding of Dox metabolism, mechanisms of action and cardiotoxicity drivers. This review summarises the current knowledge around Dox’s metabolism, mechanisms of anticancer activity, and delivery systems and offers a unique perspective on the relationships between several proposed mechanisms of Dox-induced cardiotoxicity.
Key findings
While there is a strong understanding of Dox’s pharmacokinetic properties, it is unclear which enzymes contribute to Dox metabolism and how Dox induces its cytotoxic effect in neoplastic and non-neoplastic cells. Evidence suggests that there are several potentially synergistic mechanisms involved in Dox-induced cardiotoxicity.
Summary
It has become clear that Dox operates in a multifactorial fashion dependent on cellular context. Accumulation of oxidative stress appears to be a common factor in cardiotoxicity mechanisms, highlighting the importance of novel delivery systems and antioxidant therapies.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献