Barbaloin attenuates pulmonary fibrosis through TGF-β1/Smads/p38 pathway

Author:

Zhang Gong12ORCID,Bai Rong2,Huang Jianlin2ORCID,Gao Yafeng2,Yun Xiuli2,Haji Akber Aisa1ORCID

Affiliation:

1. The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi, Xinjiang , China

2. Yanan University Affiliated Hospital , Yanan, Shaanxi , China

Abstract

Abstract Objectives Barbaloin is one of the main bioactive ingredients extracted from Aloe vera, which has the property of protecting the lung from LPS-induced acute injury; however, the anti-pulmonary fibrosis effect of barbaloin is still unknown. Herein, we present novel data showing the anti-pulmonary fibrosis effect of barbaloin and revealing the possible molecular mechanism. Methods In vivo experiment, oral administration of barbaloin was investigated through paraquat-induced pulmonary fibrosis in mice. In vitro experiment, epithelial-mesenchymal transition (EMT) process and TGF-β1 pathway were investigated in A549 cells for exploring the anti-fibrosis molecular mechanism of barbaloin. Key findings Results showed that barbaloin could improve pulmonary fibrosis through improving physiological routine indexes and histopathological lesions of mice in a dose-dependent manner. Hydroxyproline, collagen I, N-cadherin and α-SMA levels were significantly suppressed. Besides, pro-inflammatory cytokines were also improved. In vitro experiment, barbaloin could inhibit the process of EMT through repressing α-SMA, collagen I and N-cadherin and increasing E-cadherin. In addition, barbaloin could repress the expression of p-Smad2/3 and then suppress the process of EMT through intervening TGF-β1-induced canonical pathway. Moreover, MMP-2 and MMP-9 were also inhibited by barbaloin via repressing phosphorylation of p38 through TGF-β1-induced non-canonical axis. Conclusions Our findings reveal the anti-pulmonary fibrosis effect of barbaloin in vivo and in vitro for the first time. These results indicate that barbaloin may be a promising clinical candidate drug against pulmonary fibrosis.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3