Delphinidin induces autophagic flux blockage and apoptosis by inhibiting both multidrug resistance gene 1 and DEAD-box helicase 17 expressions in liver cancer cells

Author:

Sun Shenghui1,Xu Kun1,Yan Mingjing12,Cui Ju1,Zhu Kaiyi1,Yang Yao1,Zhang Xiaoyi1,Tang Weiqing1,Huang Xiuqing1,Dou Lin1,Chen Beidong1,Lin Yajun1,Zhang Xiyue1,Man Yong1,Li Jian12ORCID,Shen Tao1ORCID

Affiliation:

1. The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing , China

2. Peking University Fifth School of Clinical Medicine , Beijing , China

Abstract

Abstract Objectives To investigate the function and regulatory mechanisms of delphinidin in the treatment of hepatocellular carcinoma. Methods HepG2 and HuH-7 cells were treated with different concentrations of delphinidin. Cell viability was analysed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell autophagy and autophagic flux were analysed by LC3b-green fluorescent protein (GFP)-Adv and LC3b-GFP-monomeric red fluorescent protein-Adv transfected HepG2 and HuH-7 cells, respectively. Cell apoptosis was analysed by Hoechst33342 staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and DNA laddering. Cell autophagy, apoptosis and survival related protein expressions were detected by Western blotting. Key findings After treatment with different concentrations of delphinidin, the cell survival rate was significantly decreased. Delphinidin could block the autophagic flux, resulting in a significant increase in autophagosomes, and led to an increase in cell apoptosis. The combined application of delphinidin and cisplatin could promote the antitumour effect and reduce the dose of cisplatin in tumour cells. Further mechanism studies reveal that delphinidin could inhibit the multidrug resistance gene 1 (MDR1) and the tumour-promoting transcription cofactor DEAD-box helicase 17 (DDX17) expression in tumour cells. Overexpression of DDX17 could reverse delphinidin’s antitumor function in tumour cells. Conclusions Delphinidin has a strong anti-tumour effect by inducing tumour cell autophagic flux blockage and apoptosis by inhibiting of both MDR1 and DDX17 expression.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3