Computational Approaches and Observer Variation in the 3D Musculoskeletal Modeling of the Heads of Anolis

Author:

Lagorio A D1ORCID,McGechie F R2ORCID,Fields M G1ORCID,Fortner J1ORCID,Mackereth E1,Perez C3ORCID,Wilken A T4ORCID,Leal M3ORCID,Ward C V1ORCID,Middleton K M3ORCID,Holliday C M1ORCID

Affiliation:

1. Department of Pathology and Anatomical Sciences, University of Missouri , Columbia , MO 65212, USA

2. Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix , Phoenix, AZ 85004, USA

3. Division of Biological Sciences, University of Missouri , Columbia , MO 65211, USA

4. Department of Organismal Biology and Anatomy, University of Chicago , Chicago, IL 60637, USA

Abstract

Synopsis High-resolution imaging, 3D modeling, and quantitative analyses are equipping evolutionary biologists with new approaches to understanding the variation and evolution of the musculoskeletal system. However, challenges with interpreting DiceCT data and higher order use of modeled muscles have not yet been fully explored, and the error in and accuracy of some digital methods remain unclear. West Indian Anolis lizards are a model clade for exploring patterns in functional adaptation, ecomorphology, and sexual size dimorphism in vertebrates. These lizards possess numerous jaw muscles with potentially different anatomies that sculpt the adductor chamber of the skull. Here we test approaches to quantifying the musculoskeletal shape of the heads of two species of Anolis: A. pulchellus and A. sagrei. We employ comparative approaches such as DiceCT segmentation of jaw muscles, 3D surface attachment mapping, and 3D landmarking with the aim of exploring muscle volumes, 3D muscle fiber architecture, and sexual dimorphism of the skull. We then compare sources of measurement error in these 3D analyses while also presenting new 3D musculoskeletal data from the Anolis feeding apparatus. These findings demonstrate the accessibility and repeatability of these emerging techniques as well as provide details regarding the musculoskeletal anatomy of the heads of A. pulchellus and A. sagrei which show potential for further research of comparative biomechanics and evolution in the clade.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3