Sample Size and Geometric Morphometrics Methodology Impact the Evaluation of Morphological Variation

Author:

Rummel A D1ORCID,Sheehy E T2,Schachner E R3ORCID,Hedrick B P4ORCID

Affiliation:

1. Department of BioSciences, Rice University , Houston, TX 77005 , USA

2. Department of Ecology and Evolutionary Biology, Tulane University , New Orleans, LA 70118 , USA

3. Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, FL 32603 , USA

4. Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY 14853 , USA

Abstract

Synopsis Geometric morphometrics has had a profound impact on our understanding of morphological evolution. However, factors such as sample size and the views and elements selected for two-dimensional geometric morphometric (2DGM) analyses, which are often dictated by specimen availability and time rather than study design, may affect the outcomes of those analyses. Leveraging large intraspecific sample sizes (n > 70) for two bat species, Lasiurus borealis and Nycticeius humeralis, we evaluate the impact of sample size on calculations of mean shape, shape variance, and centroid size. Additionally, we assessed the concordance of multiple skull 2D views with one another and characterized morphological variation in skull shape in L. borealis and N. humeralis, as well as a closely related species, Lasiurus seminolus. Given that L. seminolus is a morphologically cryptic species with L. borealis, we assessed whether differences in skull shape and in 2DGM approach would allow species discrimination. We found that reducing sample size impacted mean shape and increased shape variance, that shape differences were not consistent across views or skull elements, and that trends shown by the views and elements were not all strongly associated with one another. Further, we found that L. borealis and L. seminolus were statistically different in shape using 2DGM in all views and elements. These results underscore the importance of selecting appropriate sample sizes, 2D views, and elements based on the hypothesis being tested. While there is likely not a generalizable sample size or 2D view that can be employed given the wide variety of research questions and systems evaluated using 2DGM, a generalizable solution to issues with 2DGM presented here is to run preliminary analyses using multiple views, elements, and sample sizes, thus ensuring robust conclusions.

Funder

Louisiana State University Research Enhancement Program

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3