Predicting Increased Incidence of Common Antibiotic-Resistant and Antibiotic-Associated Pathogens Using Ensemble Species Distribution Modeling

Author:

Brough Siqi C12ORCID,Caddell Luke2,Liou Raymond J23,Patil Advait2,De Leo Giulio45ORCID,Forrester Joseph D2ORCID

Affiliation:

1. Department of Surgery, Inova Fairfax Medical Campus , Falls Church, Virginia , USA

2. Division of General Surgery, Department of Surgery, Stanford University , Stanford, California , USA

3. Department of Surgery, Emory University , Atlanta, Georgia , USA

4. Woods Institute for the Environment, Stanford University , Stanford, California , USA

5. Hopkins Marine Station, Stanford University , Pacific Grove, California , USA

Abstract

Abstract The Centers for Disease Control estimates antibiotic-associated pathogens result in 2.8 million infections and 38 000 deaths annually in the United States. This study applies species distribution modeling to elucidate the impact of environmental determinants of human infectious disease in an era of rapid global change. We modeled methicillin-resistant Staphylococcus aureus and Clostridioides difficile using 31 publicly accessible bioclimatic, health care, and sociodemographic variables. Ensemble models were created from 8 unique statistical and machine learning algorithms. Using International Classification of Diseases, 10th edition codes, we identified 305 528 diagnoses of methicillin-resistant S. aureus and 203 001 diagnoses of C. difficile presence. Three environmental factors—average maximum temperature, specific humidity, and agricultural land density—emerged as major predictors of increased methicillin-resistant S. aureus and C. difficile presence; variables representing health care availability were less important. Species distribution modeling may be a powerful tool for identifying areas at increased risk for disease presence and have important implications for disease surveillance systems.

Funder

Surgical Infection Society Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3