Epithelial Cell NOD1/IRGM Recruits STX17 to Neisseria gonorrhoeae–Containing Endosomes to Initiate Lysosomal Degradation

Author:

Gao Shuai1,Yuan Dailin12,Gao Lingyu1,Yang Fan1,Lin Xu’ai1,van der Veen Stijn1234ORCID

Affiliation:

1. Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China

2. Zhejiang University–University of Edinburgh Institute, School of Medicine, Zhejiang University , Haining , People's Republic of China

3. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou , People's Republic of China

4. Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering , Zhejiang University, Hangzhou , People's Republic of China

Abstract

Abstract Neisseria gonorrhoeae establishes tight interactions with mucosal epithelia through activity of its type IV pilus, while pilus retraction forces activate autophagic responses toward invading gonococci. Here we studied pilus-independent epithelial cell responses and showed that pilus-negative gonococci residing in early and late endosomes are detected and targeted by nucleotide-binding oligomerization domain 1 (NOD1). NOD1 subsequently forms a complex with immunity-related guanosine triphosphatase M (IRGM) and autophagy-related 16–like 1 (ATG16L1) to activate autophagy and recruit microtubule-associated protein light chain 3 (LC3) to the intracellular bacteria. IRGM furthermore directly recruits syntaxin 17 (STX17), which is able to form tethering complexes with the lysosome. Importantly, IRGM-STX17 interactions are enhanced by LC3 but were still observed at lower levels in an LC3 knockout cell line. These findings demonstrate key roles for NOD1 and IRGM in the sensing of intracellular N gonorrhoeae and subsequent directing of the bacterium to the lysosome for degradation.

Funder

National Natural Science Foundation of China

Zhejiang Province Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3