Identification of Novel Neisseria gonorrhoeae Lineages Harboring Resistance Plasmids in Coastal Kenya

Author:

Cehovin Ana1ORCID,Harrison Odile B2,Lewis Steven B1,Ward Philip N1,Ngetsa Caroline3,Graham Susan M34,Sanders Eduard J536,Maiden Martin C J2,Tang Christoph M1

Affiliation:

1. Sir William Dunn School of Pathology, University of Oxford, United Kingdom

2. Department of Zoology, University of Oxford, United Kingdom

3. Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya

4. University of Washington, Seattle

5. Nuffield Department of Medicine, University of Oxford, United Kingdom

6. Department of Global Health, University of Amsterdam, The Netherlands

Abstract

AbstractBackgroundAfrica has the highest incidence of gonorrhea in the world. However, little is known about gonococcal populations in this continent or mechanisms of antimicrobial resistance (AMR).MethodsWhole-genome sequence data were analyzed from 103 Neisseria gonorrhoeae isolates from 73 patients, mainly men who have sex with men, from coastal Kenya. We annotated loci, defined the core genome, defined mechanisms of AMR, and performed phylogenetic analysis. For patients with multiple episodes of gonorrhea, we determined whether infections occurred with related strains.ResultsWe identified 3 clusters of isolates that are phylogenetically distinct from isolates found elsewhere. Plasmids were virtually ubiquitous: pTetM and pblaTEM were found in 97%, and 55% of isolates, respectively. This was associated with high doxycycline use for undiagnosed sexually transmitted infections. Twenty-three percent of multiple episodes of gonorrhea in the same individual were caused by a related strain, suggesting inadequate treatment or reinfection.ConclusionsThe prevalence of plasmid-mediated AMR in Kenyan gonococci contrasts with that in wealthy countries, where AMR is largely chromosomally mediated. Antimicrobials have a profound effect on the maintenance of lineages harboring plasmids. Doxycycline can select for tetracycline and penicillin resistance, through plasmid cooperation. Understanding the mechanisms of AMR in high-risk groups is required to inform treatment strategies.

Funder

Oxford Martin School

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3