Intradermal SynCon® Ebola GP DNA Vaccine Is Temperature Stable and Safely Demonstrates Cellular and Humoral Immunogenicity Advantages in Healthy Volunteers

Author:

Tebas Pablo1,Kraynyak Kimberly A2,Patel Ami3,Maslow Joel N4,Morrow Matthew P2,Sylvester Albert J2,Knoblock Dawson2,Gillespie Elisabeth2,Amante Dinah2,Racine Trina5,McMullan Trevor2,Jeong Moonsup4,Roberts Christine C4,Park Young K4,Boyer Jean2,Broderick Kate E2,Kobinger Gary P5,Bagarazzi Mark2,Weiner David B3,Sardesai Niranjan Y2,White Scott M2

Affiliation:

1. University of Pennsylvania, Philadelphia

2. Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania

3. The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania

4. GeneOne Life Science, Gangnam-Gu, Seoul, Korea

5. Université Laval, Quebec City, Quebec, Canada

Abstract

AbstractBackgroundNonlive vaccine approaches that are simple to deliver and stable at room temperature or 2–8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery.MethodsTwo DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices.ResultsThe safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen.ConclusionsID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations.Clinical Trials Registration. NCT02464670.

Funder

Defense Advanced Research Projects Agency

W. W. Smith Charitable Trust

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3