Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data from Malaria Volunteer Infection Studies

Author:

Wockner Leesa F1,Hoffmann Isabell1,Webb Lachlan1,Mordmüller Benjamin2,Murphy Sean C3,Kublin James G4,O’Rourke Peter1,McCarthy James S156,Marquart Louise1

Affiliation:

1. QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

2. Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany

3. Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, WA, USA

4. Fred Hutchinson Cancer Research Center, Seattle, WA, USA

5. School of Medicine, The University of Queensland, Brisbane, QLD, Australia

6. Q-Pharm Pty Ltd, Brisbane, QLD, Australia

Abstract

Abstract Background Growth rate of malaria parasites in the blood of infected subjects is an important measure of efficacy of drugs and vaccines. Methods We used log-linear and sine-wave models to estimate the parasite growth rate of the 3D7 strain of Plasmodium falciparum using data from 177 subjects from 14 induced blood stage malaria (IBSM) studies conducted at QIMR Berghofer. We estimated parasite multiplication rate per 48 hour (PMR48), PMR per life-cycle (PMRLC), and parasite life-cycle duration. We compared these parameters to those from studies conducted elsewhere with infections induced by IBSM (n=66), sporozoites via mosquito bite (n=336) or injection (n=51). Results The parasite growth rate of 3D7 in QIMR Berghofer studies was 0.75/day (95% CI: 0.73–0.77/day), PMR48 was 31.9 (95% CI: 28.7–35.4), PMRLC was 16.4 (95% CI: 15.1–17.8) and parasite life-cycle was 38.8 hour (95% CI: 38.3–39.2 hour). These parameters were similar to estimates from IBSM studies elsewhere (0.71/day, 95% CI: 0.67–0.75/day; PMR48 26.6, 95% CI: 22.2–31.8), but significantly higher (P < 0.001) than in sporozoite studies (0.47/day, 95% CI: 0.43–0.50/day; PMR48 8.6, 95% CI: 7.3–10.1). Conclusion Parasite growth rates were similar across different IBSM studies and higher than infections induced by sporozoite.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3