Escalation of Pyrethroid Resistance in the Malaria Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl Butoxide–Based Insecticide-Treated Nets in Mozambique

Author:

Riveron Jacob M12,Huijben Silvie34,Tchapga Williams2,Tchouakui Magellan2,Wondji Murielle J12,Tchoupo Micareme2,Irving Helen1,Cuamba Nelson5,Maquina Mara6,Paaijmans Krijn346,Wondji Charles S12ORCID

Affiliation:

1. Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom

2. Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon

3. Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe

4. ISGlobal, Barcelona, Spain

5. Instituto Nacional de Saúde, Maputo

6. Centro de Investigação em Saúde da Manhiça, Mozambique

Abstract

Abstract Background Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. Methods The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. Results A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)–based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. Conclusions The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.

Funder

Wellcome Trust Senior Research Fellowship in Biomedical Sciences

Bill & Melinda Gates Foundation

Obra Social “la Caixa” Partnership

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3