The Laminin Interactome: A Multifactorial Laminin-Binding Strategy by Nontypeable Haemophilus influenzae for Effective Adherence and Colonization

Author:

Su Yu-Ching1,Mattsson Emma1,Singh Birendra1,Jalalvand Farshid1,Murphy Timothy F2,Riesbeck Kristian1

Affiliation:

1. Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden

2. Clinical and Translational Research Center, University at Buffalo, the State University of New York

Abstract

Abstract Laminin is a well-defined component of the airway basement membrane (BM). Efficient binding of laminin via multiple interactions is important for nontypeable Haemophilus influenzae (NTHi) colonization in the airway mucosa. In this study, we identified elongation factor thermo-unstable (EF-Tu), l-lactate dehydrogenase (LDH), protein D (PD), and peptidoglycan-associated lipoprotein P6 as novel laminin-binding proteins (Lbps) of NTHi. In parallel with other well-studied Lbps (protein 4 [P4], protein E [PE], protein F [PF], and Haemophilus adhesion and penetration protein [Hap]), EF-Tu, LDH, PD, and P6 exhibited interactions with laminin, and mediated NTHi laminin-dependent adherence to pulmonary epithelial cell lines. More importantly, the NTHi laminin interactome consisting of the well-studied and novel Lbps recognized laminin LG domains from the subunit α chains of laminin-111 and -332, the latter isoform of which is the main laminin in the airway BM. The NTHi interactome mainly targeted multiple heparin-binding domains of laminin. In conclusion, the NTHi interactome exhibited a high plasticity of interactions with different laminin isoforms via multiple heparin-binding sites.

Funder

National Institutes of Health

Foundations of Anna and Edwin Berger

Swedish Medical Research Council

Cancer Foundation at the University Hospital in Malmö

Royal Physiographical Society

Skåne County Council’s Research and Development Foundation

Heart Lung Foundation

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3