Harnessing Endogenous Peptide Compounds as Potential Therapeutics for Severe Influenza

Author:

West Alison C12,Harpur Christopher M12,Le Page Mélanie A12,Lam Maggie12,Hodges Christopher12,Ely Lauren K3,Gearing Andrew J3,Tate Michelle D12ORCID

Affiliation:

1. Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research

2. Department of Molecular and Translational Sciences, Monash University , Clayton

3. Lateral Pharma Pty Ltd , Melbourne , Australia {C}%3C!%2D%2D%7C%7CrmComment%7C%7C%3C~show%20%5BAQ%20ID%3DAQ2%5D~%3E%2D%2D%3E

Abstract

Abstract Background Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic 16–amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6–amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. Methods LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. Results Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. Conclusions These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3