Within-Host Rhinovirus Evolution in Upper and Lower Respiratory Tract Highlights Capsid Variability and Mutation-Independent Compartmentalization

Author:

Makhsous Negar1,Goya Stephanie1,Avendaño Carlos C1,Rupp Jason1,Kuypers Jane1,Jerome Keith R12,Boeckh Michael23,Waghmare Alpana24,Greninger Alexander L12ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathology, University of Washington , Seattle , USA

2. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center , Seattle , USA

3. Department of Medicine, University of Washington , Seattle , USA

4. Department of Pediatrics, University of Washington , Seattle , USA

Abstract

Abstract Background Rhinovirus (RV) infections can progress from the upper (URT) to lower (LRT) respiratory tract in immunocompromised individuals, causing high rates of fatal pneumonia. Little is known about how RV evolves within hosts during infection. Methods We sequenced RV complete genomes from 12 hematopoietic cell transplant patients with infection for up to 190 days from both URT (nasal wash, NW) and LRT (bronchoalveolar lavage, BAL). Metagenomic and amplicon next-generation sequencing were used to track the emergence and evolution of intrahost single nucleotide variants (iSNVs). Results Identical RV intrahost populations in matched NW and BAL specimens indicated no genetic adaptation is required for RV to progress from URT to LRT. Coding iSNVs were 2.3-fold more prevalent in capsid over nonstructural genes. iSNVs modeled were significantly more likely to be found in capsid surface residues, but were not preferentially located in known RV-neutralizing antibody epitopes. Newly emergent, genotype-matched iSNV haplotypes from immunocompromised individuals in 2008–2010 could be detected in Seattle-area community RV sequences in 2020–2021. Conclusions RV infections in immunocompromised hosts can progress from URT to LRT with no specific evolutionary requirement. Capsid proteins carry the highest variability and emergent mutations can be detected in other, including future, RV sequences.

Funder

University of Washington

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3