Impact of the Baloxavir-Resistant Polymerase Acid I38T Substitution on the Fitness of Contemporary Influenza A(H1N1)pdm09 and A(H3N2) Strains

Author:

Checkmahomed Liva1,M’hamdi Zeineb1,Carbonneau Julie1,Venable Marie-Christine1,Baz Mariana1,Abed Yacine1,Boivin Guy1

Affiliation:

1. Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval and Laval University, Québec City, Québec, Canada

Abstract

Abstract Background Baloxavir is a cap-dependent inhibitor of the polymerase acid (PA) protein of influenza viruses. While appearing virologically superior to oseltamivir, baloxavir exhibits a low barrier of resistance. We sought to assess the impact of the common baloxavir-resistant I38T PA substitution on in vitro properties and virulence. Methods Influenza A/Quebec/144147/2009 (H1N1)pdm09 and A/Switzerland/9715293/2013 (H3N2) recombinant viruses and their I38T PA mutants were compared in single and competitive infection experiments in ST6GalI-MDCK cells and C57/BL6 mice. Virus titers in cell culture supernatants and lung homogenates were determined by virus yield assays. Ratios of wild-type (WT) and I38T mutant were assessed by digital RT-PCR. Results I38T substitution did not alter the replication kinetics of A(H1N1)pdm09 and A(H3N2) viruses. In competition experiments, a 50%:50% mixture evolved to 70%:30% (WT/mutant) for A(H1N1) and 88%:12% for A(H3N2) viruses after a single cell passage. The I38T substitution remained stable after 4 passages in vitro. In mice, the WT and its I38T mutant induced similar weight loss with comparable lung titers in both viral subtypes. The mutant virus tended to predominate over the WT in mouse competition experiments. Conclusion The fitness of baloxavir-resistant I38T PA mutants appears relatively unaltered in seasonal subtypes warranting surveillance for its dissemination.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3