Human Cytomegalovirus (HCMV)-Specific Antibody Response and Development of Antibody-Dependent Cellular Cytotoxicity Against HCMV After Lung Transplantation

Author:

Vietzen Hannes1,Görzer Irene1,Honsig Claudia2,Jaksch Peter3,Puchhammer-Stöckl Elisabeth1

Affiliation:

1. Center for Virology, Medical University of Vienna, Vienna, Austria

2. Division of Clinical Virology, Medical University of Vienna, Vienna, Austria

3. Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria

Abstract

Abstract Background Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). The impact of the host antibody (AB)-dependent cytotoxicity (ADCC) on HCMV is still unclear. Therefore, we analyzed the AB-response against HCMV glycoprotein B (gB) and the pentameric complex (PC) and the ADCC response in HCMV-seropositive (R+) LTRs and in seronegative recipients of positive organs (D+/R−). Methods Plasma samples were collected from 35 R+ and 28 D+/R− LTRs for 1 (R+) or 2 (D+/R−) years posttransplantation and from 114 healthy control persons. The PC- and gB-specific ABs were assessed by enzyme-linked immunosorbent assay. The ADCC was analyzed by focal expansion assay and CD107 cytotoxicity assay. Results In R+ LTRs, significantly higher gB-specific AB levels developed within 1 year posttransplantation than in controls (immunoglobulin [Ig]G1, P < .001; IgG3, P < .001). In addition, higher levels of ADCC were observed by FEA and CD107 assay in R+ patients compared with controls (P < .001). In 23 D+R− patients, HCMV-specific ABs developed. Antibody-dependent cytotoxicity became detectable 3 months posttransplantation in these, with higher ADCC observed in viremic patients. Depletion of gB- and PC-specific ABs revealed that, in particular, gB-specific Abs were associated with the ADCC response. Conclusions We show that a strong ADCC is elicited after transplantation and is especially based on gB-specific ABs.

Funder

Center for Virology, Medical University of Vienna

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3