A novel molecular representation with BiGRU neural networks for learning atom

Author:

Lin Xuan1,Quan Zhe1,Wang Zhi-Jie1ORCID,Huang Huang2,Zeng Xiangxiang13

Affiliation:

1. College of Computer Science and Technology, Hunan University, Changsha, 410082, China

2. College of Computer, National University of Defense Technology, Changsha, 410073,China

3. School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510275, China

Abstract

Abstract Molecular representations play critical roles in researching drug design and properties, and effective methods are beneficial to assisting in the calculation of molecules and solving related problem in drug discovery. In previous years, most of the traditional molecular representations are based on hand-crafted features and rely heavily on biological experimentations, which are often costly and time consuming. However, recent researches achieve promising results using machine learning on various domains. In this article, we present a novel method named Smi2Vec-BiGRU that is designed for learning atoms and solving the single- and multitask binary classification problems in the field of drug discovery, which are the basic and also key problems in this field. Specifically, our approach transforms the molecule data in the SMILES format into a set of sample vectors and then feeds them into the bidirectional gated recurrent unit neural networks for training, which learns low-dimensional vector representations for molecular drug. We conduct extensive experiments on several widely used benchmarks including Tox21, SIDER and ClinTox. The experimental results show that our approach can achieve state-of-the-art performance on these benchmarking datasets, demonstrating the feasibility and competitiveness of our proposed approach.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3