Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration

Author:

Pierre-Jean Morgane1,Deleuze Jean-François2,Le Floch Edith3,Mauger Florence3

Affiliation:

1. CNRGH, Evry, France

2. Institute of Biology François Jacob, CEA

3. CNRGH

Abstract

Abstract Recent advances in NGS sequencing, microarrays and mass spectrometry for omics data production have enabled the generation and collection of different modalities of high-dimensional molecular data. The integration of multiple omics datasets is a statistical challenge, due to the limited number of individuals, the high number of variables and the heterogeneity of the datasets to integrate. Recently, a lot of tools have been developed to solve the problem of integrating omics data including canonical correlation analysis, matrix factorization and SM. These commonly used techniques aim to analyze simultaneously two or more types of omics. In this article, we compare a panel of 13 unsupervised methods based on these different approaches to integrate various types of multi-omics datasets: iClusterPlus, regularized generalized canonical correlation analysis, sparse generalized canonical correlation analysis, multiple co-inertia analysis (MCIA), integrative-NMF (intNMF), SNF, MoCluster, mixKernel, CIMLR, LRAcluster, ConsensusClustering, PINSPlus and multi-omics factor analysis (MOFA). We evaluate the ability of the methods to recover the subgroups and the variables that drive the clustering on eight benchmarks of simulation. MOFA does not provide any results on these benchmarks. For clustering, SNF, MoCluster, CIMLR, LRAcluster, ConsensusClustering and intNMF provide the best results. For variable selection, MoCluster outperforms the others. However, the performance of the methods seems to depend on the heterogeneity of the datasets (especially for MCIA, intNMF and iClusterPlus). Finally, we apply the methods on three real studies with heterogeneous data and various phenotypes. We conclude that MoCluster is the best method to analyze these omics data. Availability: An R package named CrIMMix is available on GitHub at https://github.com/CNRGH/crimmix to reproduce all the results of this article.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference64 articles.

1. Methods of integrating data to uncover genotype–phenotype interactions;Ritchie;Nat Rev Genet,2015

2. Trans-omics: how to reconstruct biochemical networks across multiple omic layers;Yugi;Trends Biotechnol,2016

3. Multi-omics of single cells: strategies and applications;Bock;Trends Biotechnol,2016

4. Onco-multi-omics approach: a new frontier in cancer research;Chakraborty;Biomed Res Int,2018

5. Single cell multi-omics technology: methodology and application;Hu;Front Cell Dev Biol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3