Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks

Author:

Sun Jun1ORCID,Shi Qianqian1,Chen Xi23,Liu Rong1

Affiliation:

1. Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

2. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China

3. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Abstract Although intensive efforts have been devoted to investigating latent tuberculosis (LTB) and active tuberculosis (PTB) infections, the similarities and differences in the host responses to these two closely associated stages remain elusive, probably due to the difficulty in identifying informative genes related to LTB using traditional methods. Herein, we developed a framework known as the consistently differential expression network to identify tuberculosis (TB)-related gene pairs by combining microarray profiles and protein–protein interactions. We thus obtained 774 and 693 pairs corresponding to the PTB and LTB stages, respectively. The PTB-specific genes showed higher expression values and fold-changes than the LTB-specific genes. Furthermore, the PTB-related pairs generally had higher expression correlations and would be more activated compared to their LTB-related counterparts. The module analysis implied that the detected gene pairs tended to cluster in the topological and functional modules. Functional analysis indicated that the LTB- and PTB-specific genes were enriched in different pathways and had remarkably different locations in the NF-κB signaling pathway. Finally, we showed that the identified genes and gene pairs had the potential to distinguish TB patients in different disease stages and could be considered as drug targets for the specific treatment of patients with LTB or PTB.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3