Deep learning of pharmacogenomics resources: moving towards precision oncology

Author:

Chiu Yu-Chiao1,Chen Hung-I Harry12,Gorthi Aparna1,Mostavi Milad12,Zheng Siyuan13,Huang Yufei23,Chen Yidong13

Affiliation:

1. Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA

2. Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX 78249, USA

3. Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA

Abstract

AbstractThe recent accumulation of cancer genomic data provides an opportunity to understand how a tumor’s genomic characteristics can affect its responses to drugs. This field, called pharmacogenomics, is a key area in the development of precision oncology. Deep learning (DL) methodology has emerged as a powerful technique to characterize and learn from rapidly accumulating pharmacogenomics data. We introduce the fundamentals and typical model architectures of DL. We review the use of DL in classification of cancers and cancer subtypes (diagnosis and treatment stratification of patients), prediction of drug response and drug synergy for individual tumors (treatment prioritization for a patient), drug repositioning and discovery and the study of mechanism/mode of action of treatments. For each topic, we summarize current genomics and pharmacogenomics data resources such as pan-cancer genomics data for cancer cell lines (CCLs) and tumors, and systematic pharmacologic screens of CCLs. By revisiting the published literature, including our in-house analyses, we demonstrate the unprecedented capability of DL enabled by rapid accumulation of data resources to decipher complex drug response patterns, thus potentially improving cancer medicine. Overall, this review provides an in-depth summary of state-of-the-art DL methods and up-to-date pharmacogenomics resources and future opportunities and challenges to realize the goal of precision oncology.

Funder

AACR-AstraZeneca Stimulating Therapeutic Advances

San Antonio Life Science Institute

CPRIT

NIH

NCI Cancer Center Shared Resources

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3