Accuracy of protein-level disorder predictions

Author:

Katuwawala Akila11,Oldfield Christopher J11,Kurgan Lukasz11ORCID

Affiliation:

1. Department of Computer Science, Virginia Commonwealth University, USA

Abstract

Abstract Experimental annotations of intrinsic disorder are available for 0.1% of 147 000 000 of currently sequenced proteins. Over 60 sequence-based disorder predictors were developed to help bridge this gap. Current benchmarks of these methods assess predictive performance on datasets of proteins; however, predictions are often interpreted for individual proteins. We demonstrate that the protein-level predictive performance varies substantially from the dataset-level benchmarks. Thus, we perform first-of-its-kind protein-level assessment for 13 popular disorder predictors using 6200 disorder-annotated proteins. We show that the protein-level distributions are substantially skewed toward high predictive quality while having long tails of poor predictions. Consequently, between 57% and 75% proteins secure higher predictive performance than the currently used dataset-level assessment suggests, but as many as 30% of proteins that are located in the long tails suffer low predictive performance. These proteins typically have relatively high amounts of disorder, in contrast to the mostly structured proteins that are predicted accurately by all 13 methods. Interestingly, each predictor provides the most accurate results for some number of proteins, while the best-performing at the dataset-level method is in fact the best for only about 30% of proteins. Moreover, the majority of proteins are predicted more accurately than the dataset-level performance of the most accurate tool by at least four disorder predictors. While these results suggests that disorder predictors outperform their current benchmark performance for the majority of proteins and that they complement each other, novel tools that accurately identify the hard-to-predict proteins and that make accurate predictions for these proteins are needed.

Funder

Robert J. Mattauch Endowment

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3