Uncertainty analysis of numerical inversions of temperature logs from boreholes under injection conditions

Author:

Wang Jia1,Nitschke Fabian1,Gaucher Emmanuel1ORCID,Kohl Thomas1

Affiliation:

1. Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany

Abstract

Abstract Conventional methods to estimate the static formation temperature (SFT) require borehole temperature data measured during thermal recovery periods. This can be both economically and technically prohibitive under real operational conditions, especially for high-temperature boreholes. This study investigates the use of temperature logs obtained under injection conditions to determine SFT through inverse modelling. An adaptive sampling approach based on machine-learning techniques is applied to explore the model space efficiently by iteratively proposing samples based on the results of previous runs. Synthetic case studies are conducted with rigorous evaluation of factors affecting the quality of SFT estimates for deep hot wells. The results show that using temperature data measured at higher flow rates or after longer injection times could lead to less-reliable results. Furthermore, the estimation error exhibits an almost linear dependency on the standard error of the measured borehole temperatures. In addition, potential flow loss zones in the borehole would lead to increased uncertainties in the SFT estimates. Consequently, any prior knowledge about the amount of flow loss could improve the estimation accuracy considerably. For formations with thermal gradients varying with depth, prior information on the depth of the gradient change is necessary to avoid spurious results. The inversion scheme presented is demonstrated as an efficient tool for quantifying uncertainty in the interpretation of borehole data. Although only temperature data are considered in this work, other types of data such as flow and transport measurements can also be included in this method for geophysical and rock physics studies.

Funder

Horizon 2020 Framework Programme

Karlsruher Institut für Technologie

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3