Small intestinal transcriptome analysis revealed changes of genes involved in nutrition metabolism and immune responses in growth retardation piglets1

Author:

Qi Ming12,Tan Bie1ORCID,Wang Jing12,Li Jianjun1,Liao Simeng12,Yan Jiameng1,Liu Yanhong3,Yin Yulong1

Affiliation:

1. Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Department of Animal Science, University of California, Davis, CA

Abstract

Abstract Postnatal growth retardation (PGR) is common in piglets. Abnormal development in small intestine was casually implicated in impaired growth, but the exact mechanism is still implausible. The present study unveiled transcriptome profile of jejunal mucosa, the major site of nutrient absorption, in PGR and healthy piglets using RNA-sequencing (RNA-seq). The middle segments of jejunum and ileum, and jejunal mucosa were obtained from healthy and PGR piglets at 42 d of age. Total RNA samples extracted from jejunal mucosa of healthy and PGR piglets were submitted for RNA-seq. Lower villus height was observed in both jejunum and ileum from PGR piglets suggesting structural impairment in small intestine (P < 0.05). RNA-seq libraries were constructed and sequenced, and produced average 4.8 × 107 clean reads. Analysis revealed a total of 499 differently expressed genes (DEGs), of which 320 DEGs were downregulated in PGR piglets as compared to healthy piglets. The functional annotation based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) highlighted that most DEGs were involved in nutrient metabolism and immune responses. Our results further indicated decreased gene expression associated with glucose, lipid, protein, mineral, and vitamin metabolic process, detoxication ability, oxidoreductase activity, and mucosal barrier function; as well as the increased insulin resistance and inflammatory response in the jejunal mucosa of PGR piglets. These results characterized the transcriptomic profile of the jejunal mucosa in PGR piglets, and could provide valuable information with respect to better understanding the nutrition metabolism and immune responses in the small intestine of piglets.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Earmarked Fund for China Agriculture Research System

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3