Assessment of microchimerism following somatic cell nuclear transfer and natural pregnancies in goats

Author:

Gash Kirsten K1,Yang Min1,Fan Zhiqiang1,Regouski Misha1,Rutigliano Heloisa M12ORCID,Polejaeva Irina A1

Affiliation:

1. Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT

2. School of Veterinary Medicine, Utah State University, Logan, UT

Abstract

AbstractMicrochimerism is defined as the presence of a small population of cells or DNA in 1 organism originated from a genetically different organism. It is well established that this phenomenon occurs in humans and mice as cells are exchanged between mother and fetus during gestation. Currently, no information is available about the presence of maternal microchimerism in goats, and the only published study is limited to an evaluation of fetal and fetal–fetal microchimerism in blood samples following natural breeding. In order to determine whether bidirectional fetal–maternal cell or DNA trafficking occurs in goats, we assessed: 1) fetal microchimerism in surrogates that gave birth to somatic cell nuclear transfer (SCNT)-derived transgenic offspring (n = 4), 2) maternal microchimerism following natural breeding of SCNT-derived transgenic does with a nontransgenic buck (n = 4), and 3) fetal–fetal microchimerism in nontransgenic twins of transgenic offspring (n = 3). Neomycin-resistance gene (NEO) gene was selected as the marker to detect the presence of the αMHC-TGF-β1-Neo transgene in kidney, liver, lung, lymph node, and spleen. We found no detectable maternal or fetal–fetal microchimerism in the investigated tissues of nontransgenic offspring. However, fetal microchimerism was detected in lymph node tissue of one of the surrogate dams carrying a SCNT pregnancy. These results indicate occurrence of cell trafficking from fetus to mother during SCNT pregnancies. The findings of this study have direct implications on the use and disposal of nontransgenic surrogates and nontransgenic offspring.

Funder

American Heart Association

Utah Agricultural Experimental Station

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3