Instar Determination for the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae) Using the Density-Based OPTICS Clustering Algorithm

Author:

Wang Wenqian1ORCID,Xiao Guanli2,Yang Baoyun1,Ye Jvhui1,Zhang Xu1,Zheng Yaqiang3,Chen Bin1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University , Kunming 650201 , China

2. College of Agronomy and Biotechnology, Yunnan Agricultural University , Kunming 650201 , China

3. Resource and Utilization Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine , Guiyang, Guizhou 550025 , China

Abstract

Abstract The tomato leafminer Tuta absoluta (Meyrick) is one of the most harmful pests of solanaceous crops. Its larval morphological characteristics are similar, making the distinguishing between different larval instars difficult. Accurate identification of T. absoluta instars is necessary either for population outbreak forecasting, or developing successful control programs. Although a clustering algorithm can be used to determine the number of larval instars, little is known regarding the use of density-based ordering points to identify the clustering structure (OPTICS) and determine the number of larvae. In this study, larval instars of 240 T. absoluta individuals were determined by the density-based OPTICS clustering method, based on mandible width, and head capsule width and length. To verify the feasibility of the OPTICS clustering method, we compared it with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, Gaussian mixture models, and k-means. Additionally, the instars determined by the clustering methods were verified using the Brooks–Dyar rule, Crosby rule, and linear regression model. The instars determined by the OPTICS clustering method were equal to those determined by the other types of clustering algorithms, and the instar results were consistent with the Brooks–Dyar rule, Crosby rule, frequency analysis, and logarithmic regression model. These results indicated that the OPTICS clustering method is robust for determining insect larva instar phase. Moreover, it was found that three morphological indices of T. absoluta can be used for determining instars of this pest in the field, which may provide important information for the management of T. absoluta populations.

Funder

Science and Technology Key Special Project of Yunnan Province

Technology Major Project of the China National Tobacco Corporation

Guizhou Provincial Science and Technology Projects

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3