Affiliation:
1. Institute of Cellular and Organismic Biology, Academia Sinica , 11529 Taipei , Taiwan
2. Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica , 26242 Yilan , Taiwan
Abstract
Synopsis
Metameric somites are a novel character of chordates with unclear evolutionary origins. In the early branching chordate amphioxus, anterior somites are derived from the paraxial mesodermal cells that bud off the archenteron (i.e., enterocoely) at the end of gastrulation. Development of the anterior somites requires fibroblast growth factor (FGF) signaling, and distinct somite compartments express orthologs of vertebrate nonaxial mesodermal markers. Thus, it has been proposed that the amphioxus anterior somites are homologous to the vertebrate head mesoderm, paraxial mesoderm, and lateral plate mesoderm. To trace the evolutionary origin of somites, it is essential to study the chordates’ closest sister group, Ambulacraria, which includes hemichordates and echinoderms. The anterior coeloms of hemichordate and sea urchin embryos (respectively called protocoel and coelomic pouches) are also formed by enterocoely and require FGF signals for specification and/or differentiation. In this study, we applied RNA-seq to comprehensively screen for regulatory genes associated with the mesoderm-derived protocoel of the hemichordate Ptychodera flava. We also used a candidate gene approach to identify P. flava orthologs of chordate somite markers. In situ hybridization results showed that many of these candidate genes are expressed in distinct or overlapping regions of the protocoel, which indicates that molecular compartments exist in the hemichordate anterior coelom. Given that the hemichordate protocoel and amphioxus anterior somites share a similar ontogenic process (enterocoely), induction signal (FGF), and characteristic expression of orthologous genes, we propose that these two anterior coeloms are indeed homologous. In the lineage leading to the emergence of chordates, somites likely evolved from enterocoelic, FGF-dependent, and molecularly compartmentalized anterior coeloms of the deuterostome last common ancestor.
Funder
National Science and Technology Council
Academia Sinica
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献