Asymmetric Segregation of Maternal mRNAs and Germline-related Determinants in Cephalochordate Embryos: Implications for the Evolution of Early Patterning Events in Chordates

Author:

Yu Jr-Kai123ORCID,Peng Li-Ying13,Chen Chen-Yi1,Lu Tsai-Ming1,Holland Nicholas D4,Holland Linda Z4

Affiliation:

1. Institute of Cellular and Organismic Biology (ICOB), Academia Sinica , Taipei 11529 , Taiwan

2. Marine Research Station, ICOB, Academia Sinica , Yilan 26242 , Taiwan

3. Institute of Oceanography, National Taiwan University , Taipei 10617 , Taiwan

4. Marine Biology Research Division, Scripps Institution of Oceanography, UCSD , La Jolla, CA 92093-0202 , USA

Abstract

Synopsis How animal embryos determine their early cell fates is an important question in developmental biology. In various model animals, asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification. Cephalochordates (amphioxus), which have three living genera (Asymmetron, Epigonichthys, and Branchiostoma), are an early branching chordate lineage and thus occupy a key phylogenetic position for understanding the evolution of chordate developmental mechanisms. It has been shown that in the zygote of Branchiostoma amphioxus, which possesses bilateral gonads flanking both sides of their trunk region, maternal transcripts of germline determinants form a compact granule. During early embryogenesis, this granule is inherited by a single blastomere, which subsequently gives rise to a cluster of cells displaying typical characteristics of primordial germ cells (PGC). These PGCs then come to lie in the tailbud region and proliferate during posterior elongation of the larvae to join in the gonad anlagen at the ventral tip of the developing myomeres in amphioxus larvae. However, in Asymmetron and Epigonichthys amphioxus, whose gonads are present only on the right side of their bodies, nothing is known about their PGC development or the cellular/morphogenetic processes resulting in the asymmetric distribution of gonads. Using conserved germline determinants as markers, we show that similarly to Branchiostoma amphioxus, Asymmetron also employs a preformation mechanism to specify their PGCs, suggesting that this mechanism represents an ancient trait dating back to the common ancestor of Cephalochordates. Surprisingly, we found that Asymmetron PGCs are initially deposited on both sides of the body during early larval development; however, the left-side PGCs cease to exist in young juveniles, suggesting that PGCs are eliminated from the left body side during larval development or following metamorphosis. This is reminiscent of the PGC development in the sea urchin embryo, and we discuss the implications of this observation for the evolution of developmental mechanisms.

Funder

National Science and Technology Council

Academia Sinica

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3