Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities

Author:

Payton Tokea G12ORCID,Metzger Anna M1,Childress Michael J13ORCID

Affiliation:

1. Biological Sciences Department, Clemson University , Clemson, SC 29634 , USA

2. Black in Marine Science , Spokane, WA 99201 , USA

3. Forestry and Environment Conservation Department, Clemson University , Clemson, SC 29634 , USA

Abstract

Synopsis Human-made debris is entering the ocean at alarming rates. These artificial structures are becoming habitats for small marine taxa known as cryptofauna. Cryptofauna are among the most essential reef taxa; however, little is known about these organisms, let alone their fate considering degrading coral reefs and increasing anthropogenic disturbance. The current study explores differences in naturally occurring cryptofauna biodiversity compared to those inhabiting benthic marine debris. To explore this difference, we measured invertebrate diversity from autonomous reef monitoring structures (ARMS) located on patch reefs along the middle Florida Keys reef tract. ARMS were used as a proxy for natural structure to compare to marine debris removed from five reef locations. Plastic debris was the most abundant of all the debris material collected. Wood and concrete were identified as covariates since they are sourced from wooden lobster traps. Taxa diversity varied significantly between ARMS and debris, indicating that each structural unit contained significantly different and diverse communities. The most influential taxa identified included commensal shrimps, hermit crabs, brittle stars, segmented worms, and several families of crabs. Additionally, while functional richness increased with taxa richness for ARMS communities, debris communities showed decreasing functional richness and high functional similarity, suggesting a specialization of debris-specific taxa. Overall, these data assist in better understanding of the marine community ecology surrounding anthropogenic marine debris for future debris removal and management practices for comprehensive reef health.

Funder

Clemson University

South Carolina Space Grant

South Carolina Sea Grant

Marine Science Fellowship Department of Commerce

NOAA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3