Suction Feeding Turned on Its Head: A Functional Novelty Facilitates Lower Jaw Protrusion

Author:

Martinez Christopher M1,Mazon Rizelle Mae M1,Stiassny Melanie L J2

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California , Irvine, CA 92697 , USA

2. Department of Ichthyology, American Museum of Natural History , 200 Central Park West , New York, NY 10024, USA

Abstract

Synopsis Functional novelties play important roles in creating new ways for organisms to access resources. In fishes, jaw protrusion has been attributed to the massive diversity of suction-based feeding systems, facilitating the dominant mode of prey capture in this group. Nearly all fishes that feed by suction use upper jaw protrusion, achieved by rotation of the mandible at its base, which then transmits forward motion to independently mobile upper jaw bones. In this study, by contrast, we explore an unusual form of lower jaw protrusion in the freshwater invertivore, Nannocharax fasciatus, enabled by a novel intramandibular joint (IMJ). We combine morphological, kinematic, and biomechanical data to show that the added mobility created by the IMJ influences the pattern of suction-based prey capture movements and contributes to lower jaw protrusion (increasing it by 25%, based on biomechanical modeling). Interestingly, the upper jaw bones are fused in N. fasciatus and rotate about a single fixed joint, like the lower jaws of most other suction feeding fishes. We suggest that this vertical inversion of the jaw protrusion mechanism for ventrally directed suction-feeding on benthic prey is a likely exaptation, as the IMJ is used for biting in related taxa. This work highlights the ability of novelties to facilitate ecological specialization by enabling new functional capabilities.

Funder

University of California

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3