Corrigendum: Bond Risk Premiums with Machine Learning

Author:

Bianchi Daniele1,Büchner Matthias2,Hoogteijling Tobias3,Tamoni Andrea4

Affiliation:

1. School of Economics and Finance, Queen Mary University of London

2. Warwick Business School, University of Warwick

3. Erasmus University Rotterdam and Robeco Institutional Asset Management

4. Rutgers Business School

Abstract

Abstract In this note we revisit the empirical results in Bianchi, Büchner, and Tamoni (2020) after correcting for using information not available at the time the forecast was made. Although we note a decrease in out-of-sample $R^2$, the revised analysis confirms that bond excess return predictability from neural networks remains statistically and economically significant.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference16 articles.

1. Bond risk premiums with machine learning;Bianchi,;Review of Financial Studies,2020

2. Expected stock returns and variance risk premia;Bollerslev,;Review of Financial Studies,2009

3. Approximately normal tests for equal predictive accuracy in nested models;Clark,;Journal of econometrics,2007

4. Bond risk premia;Cochrane,;American Economic Review,2005

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing digital cryptocurrency trading price prediction with an attention-based convolutional and recurrent neural network approach: The case of Ethereum;Finance Research Letters;2024-09

2. Determinants of corporate credit ratings: Does ESG matter?;International Review of Financial Analysis;2024-07

3. Bond return predictability: Macro factors and machine learning methods;European Financial Management;2024-03-12

4. Commodity factor investing via machine learning;Pacific-Basin Finance Journal;2024-02

5. Machine Learning in the Chinese Corporate Bond Market;Proceedings of the 2024 Guangdong-Hong Kong-Macao Greater Bay Area International Conference on Digital Economy and Artificial Intelligence;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3