Asymptotically optimal difference-based estimation of variance in nonparametric regression

Author:

HALL PETER1,KAY J W2,TITTERINGTON D M2

Affiliation:

1. Department of Statistics, Australian National University Canberra, ACT26OJ, Australia

2. Department of Statistics, University of Glasgow Glasgow G12 8QQ, Scotland, U.K.

Abstract

Abstract We define and compute asymptotically optimal difference sequences for estimating error variance in homoscedastic nonparametric regression. Our optimal difference sequences do not depend on unknowns, such as the mean function, and provide substantial improvements over the suboptimal sequences commonly used in practice. For example, in the case of normal data the usual variance estimator based on symmetric second-order differences is only 64% efficient relative to the estimator based on optimal second-order differences. The efficiency of an optimal mth-order difference estimator relative to the error sample variance is 2m/(2m + 1). Again this is for normal data, and increases as the tails of the error distribution become heavier.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonparametric estimation via partial derivatives;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-09-11

2. Robust tests for equality of regression curves based on characteristic functions;Statistics;2024-08-08

3. Marginalized LASSO in the low-dimensional difference-based partially linear model for variable selection;Journal of Applied Statistics;2024-07-09

4. Realized drift;Journal of Econometrics;2024-07

5. Confidence intervals in monotone regression;Scandinavian Journal of Statistics;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3