Foxp1 and Foxp4 Deletion Causes the Loss of Follicle Stem Cell Niche and Cyclic Hair Shedding by Inducing Inner Bulge Cell Apoptosis

Author:

Yang Qingchun12,Zhang Jie2,Bao Qianyi2,Zhong Jialin2,Wang Xiaoqing2,Tao Yixin2,Xu Xuegang3,Lv Kaiyang4ORCID,Wang Yushu2,Li Baojie2,He Lin2,Guo Xizhi2,Ma Gang12ORCID

Affiliation:

1. Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People’s Republic of China

2. Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University , Shanghai , People’s Republic of China

3. Department of Dermatology, The First Hospital of People’s Republic of China Medical University , Shenyang , People’s Republic of China

4. Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People’s Republic of China

Abstract

Abstract Quiescent hair follicle stem cells (HFSCs) reside in specialized bulge niche where they undergo activation and differentiation upon sensing niche-dependent signals during hair follicle (HF) homeostasis and wound repair. The underlying mechanism of HFSCs and bulge niche maintenance is poorly understood. Our previous study has reported that a transcription factor, forkhead box P1 (Foxp1), functions to maintain the quiescence of HFSCs. Here, we further discovered that forkhead box P4 (Foxp4), a close family member of Foxp1, had similar expression profiles in various components of HFs and formed a complex with Foxp1 in vitro and in vivo. The HF-specific deficiency of Foxp4 resulted in the precocious activation of HFSCs during hair cycles. In contrast to single Foxp1 or Foxp4 conditional knockout (cKO) mice, Foxp1/4 double cKO exerted an additive effect in the spectrum and severity of phenotypes in HFSC activation, hair cycling acceleration and hair loss, coupled with remarkable downregulation of fibroblast growth factor 18 (Fgf18) and bone morphogenetic protein 6 (Bmp6) expression in bulge cells. In addition, the double KO of Foxp1/4 induced the apoptosis of K6-positive (K6+) inner bulge cells, a well-established stem cell (SC) niche, thus resulting in the destruction of the bulge SC niche and recurrent hair loss. Our investigation reveals the synergistic role of Foxp1/4 in sustaining K6+ niche cells for the quiescence of HFSCs.

Funder

National Nature Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3