Workflow Optimization for Identification of Female Germline or Oogonial Stem Cells in Human Ovarian Cortex Using Single-Cell RNA Sequence Analysis

Author:

Alberico Hannah1,Fleischmann Zoë1,Bobbitt Tyler1,Takai Yasushi2,Ishihara Osamu2,Seki Hiroyuki2,Anderson Richard A3ORCID,Telfer Evelyn E4ORCID,Woods Dori C1,Tilly Jonathan L1ORCID

Affiliation:

1. Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University , Boston, MA 02115 , USA

2. Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama 350-0495 , Japan

3. MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh , Edinburgh EH14 1DJ , UK

4. Institute of Cell Biology, University of Edinburgh , Edinburgh EH14 1DJ , UK

Abstract

Abstract In 2004, the identification of female germline or oogonial stem cells (OSCs) that can support post–natal oogenesis in ovaries of adult mice sparked a major paradigm shift in reproductive biology. Although these findings have been independently verified, and further extended to include identification of OSCs in adult ovaries of many species ranging from pigs and cows to non–human primates and humans, a recent study rooted in single–cell RNA sequence analysis (scRNA-seq) of adult human ovarian cortical tissue claimed that OSCs do not exist, and that other groups working with OSCs following isolation by magnetic-assisted or fluorescence-activated cell sorting have mistaken perivascular cells (PVCs) for germ cells. Here we report that rare germ lineage cells with a gene expression profile matched to OSCs but distinct from that of other cells, including oocytes and PVCs, can be identified in adult human ovarian cortical tissue by scRNA-seq after optimization of analytical workflow parameters. Deeper cell-by-cell expression profiling also uncovered evidence of germ cells undergoing meiosis-I in adult human ovaries. Lastly, we show that, if not properly controlled for, PVCs can be inadvertently isolated during flow cytometry protocols designed to sort OSCs because of inherently high cellular autofluorescence. However, human PVCs and human germ cells segregate into distinct clusters following scRNA-seq due to non–overlapping gene expression profiles, which would preclude the mistaken identification and use of PVCs as OSCs during functional characterization studies.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3