BMP-AKT-GSK3β Signaling Restores Hair Follicle Stem Cells Decrease Associated with Loss of Sfrp1

Author:

Sunkara Raghava R12,Mehta Darshan12,Sarate Rahul M12,Waghmare Sanjeev K12ORCID

Affiliation:

1. Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar, Navi Mumbai, Maharashtra , India

2. Homi Bhabha National Institute, Training School Complex , Anushakti Nagar, Mumbai, Maharashtra , India

Abstract

Abstract Wnt signaling plays a pivotal role in regulating activation, proliferation, stem cell renewal, and differentiation of hair follicle stem cells (HFSCs). Secreted frizzled-related protein 1 (Sfrp1), a Wnt antagonist is upregulated in the HFSCs; however, its role in the HFSCs regulation is still obscure. Here, we show that Sfrp1 loss showed a depletion of HFSCs, enhanced HFSC proliferation, and faster hair follicle cycle at PD21-PD28; HFSC markers, such as Lgr5 and Axin2, were decreased in both the Sfrp1+/− and Sfrp1−/− HFSCs. In addition, the second hair follicle cycle was also faster compared with WT. Importantly, Sfrp1−/− showed a restoration of HFSC by second telogen (PD49), whereas Sfrp1+/− did not show restoration with still having a decreased HFSC. In fact, restoration of HFSCs was due to a pronounced downregulation of β-catenin activity mediated through a cross-talk of BMP-AKT-GSK3β signaling in Sfrp1−/− compared with Sfrp1+/−, where downregulation was less pronounced. In cultured keratinocytes, Sfrp1 loss resulted in enhanced proliferation and clonogenicity, which were reversed by treating with either BMPR1A or GSK3β inhibitor thereby confirming BMP-AKT-GSK3β signaling involved in β-catenin regulation in both the Sfrp1+/− and Sfrp1−/− mice. Our study reveals a novel function of Sfrp1 by unraveling an in vivo molecular mechanism that regulates the HFSCs pool mediated through a hitherto unknown cross-talk of BMP-AKT-GSK3β signaling that maintains stem cell pool balance, which in turn maintains skin tissue homeostasis.

Funder

Department of Biotechnology, India

ACTREC Fellowship

UGC Fellowship

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3