Detailed structure of mouse interferon α2 and its interaction with Sortilin

Author:

Watanabe Honoka12,Yabe-Wada Toshiki3,Onai Nobuyuki3,Unno Masaki12

Affiliation:

1. Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

2. Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai Naka, Ibaraki 319-1106, Japan

3. Department of Immunology, Kanazawa Medical University, 1-1 Daigaku, Kahoku Uchinada, Ishikawa 920-0293, Japan

Abstract

Abstract Interferon α (IFNα) is a type I interferon, an essential cytokine employed by the immune system to fight viruses. Although a number of the structures of type I interferons have been reported, most of the known structures of IFNα are in complex with its receptors. There are only two examples of structures of free IFNα: one is a dimeric X-ray structure without side-chain information; and another is an NMR structure of human IFNα. Although we have shown that Sortilin is involved in the secretion of IFNα, the details of the molecular interaction and the secretion mechanism remain unclear. Recently, we solved the X-ray structure of mouse Sortilin, but the structure of mouse IFNα remained unknown. In this study, we determined the crystal structure of mouse IFNα2 at 2.1 Å resolution and investigated its interaction with Sortilin. Docking simulations suggested that Arg22 of mouse IFNα2 is important for the interaction with mouse Sortilin. Mutation of Arg22 to alanine facilitated IFNα2 secretion, as determined by flow cytometry, highlighting the contribution of this residue to the interaction with Sortilin. These results suggest an important role for Arg22 in mouse IFNα for Sortilin-mediated IFNα trafficking.

Funder

Japn Society for the Promotion of Science

Takeda Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3