Functional analyses of plasmodium ferredoxin Asp97Tyr mutant related to artemisinin resistance of human malaria parasites

Author:

Kimata-Ariga Yoko1,Morihisa Rena1

Affiliation:

1. Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan

Abstract

Abstract Mutation of Asp97Tyr in the C-terminal region of ferredoxin (PfFd) in the apicoplast of malaria parasites was recently reported to be strongly related to the parasite’s resistance to the frontline antimalarial drug, artemisinin. We previously showed that the aromatic amino acid in the C-terminal region of PfFd is important for the interaction with its electron transfer partner, Fd-NADP+ reductase (PfFNR). Here, the importance of the aromatic–aromatic interaction between PfFd and PfFNR was shown using the kinetic analysis of the electron transfer reaction of site-directed mutants of PfFNR with PfFd. Mutation of Asp97Tyr of PfFd was further shown to increase the affinity with PfFNR by the measurements of the dissociation constant (Kd) using tryptophan fluorescence titration and the Michaelis constant (Km) in the kinetic analysis with PfFNRs. Diaphorase activity of PfFNR was inhibited by D97Y PfFd at lower concentration as compared to wild-type PfFd. Ascorbate radical scavenging activity of PfFd and electron transfer activity to a heterogeneous Fd-dependent enzyme was lower with D97Y PfFd than that of wild-type PfFd. These results showed that D97Y mutant of PfFd binds to PfFNR tighter than wild-type PfFd, and thus may suppress the function of PfFNR which could be associated with the action of artemisinin.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3